Package: mcunit (via r-universe)

September 8, 2024

Title Unit Tests for MC Methods

Version 0.3.4

Maintainer Axel Gandy <a.gandy@imperial.ac.uk>

Description Unit testing for Monte Carlo methods, particularly Markov Chain Monte Carlo (MCMC) methods, are implemented as extensions of the 'testthat' package. The MCMC methods check whether the MCMC chain has the correct invariant distribution. They do not check other properties of successful samplers such as whether the chain can reach all points, i.e. whether is recurrent. The tests require the ability to sample from the prior and to run steps of the MCMC chain. The methodology is described in Gandy and Scott (2020) <arXiv:2001.06465>.

URL https://bitbucket.org/agandy/mcunit/

License GPL-3

Encoding UTF-8

Depends R (>= 3.1)

Imports testthat (>= 2.3), stats, rlang, Rdpack (>= 0.7), simctest (>= 2.6), checkmate, parallel, ggplot2, ggpubr, dplyr, tidyr, methods, utils, tibble

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.1.2

Roxygen list(markdown = TRUE)

RdMacros Rdpack

Repository https://agandy.r-universe.dev

RemoteUrl https://bitbucket.org/agandy/mcunit

RemoteRef HEAD

RemoteSha 82bb3299390a6491c1dec03f9d6a7d2389ce1329

Contents

	_
expect_bernoulli	2
expect_mcmc	3
expect_mcmc_reversible	5
expect_mc_iid_chisq	7
expect_mc_iid_ks	8
expect mc iid mean	9
expect mc test	10
mc test	11
plot.mcunit mc iid mean	12
plot.mcunit ranktest	12
plot sample acfs	13
print meunit me test	14
sample acfs	15
sample_acts	15
sample_direct	16
sample_indirect	17
sample_rank	18
test_mcmc	19
test_mcmc_reversible	20
	23

Index

expect_bernoulli Test Bernoulli distribution using buckets

Description

Test if the success probability of a Bernoulli experiment lies within a desired 'bucket'. This used the sequential procedure described in Gandy et al. (2019).

Usage

expect_bernoulli(object, J, ok, epsilon = 0.001, ...)

Arguments

object	Function that performs one sampling step. Returns 0 or 1.
J	Buckets to use. A matrix with two rows, each column describes an interval bucket. Column names give names for the bucket(s).
ok	Name of bucket(s) that pass the Unit test.
epsilon	Error bound.
	Further parameters to be passed on to 'mctest'.

Value

The first argument, invisibly, to allow chaining of expectations.

expect_mcmc

References

Gandy A, Hahn G, Ding D (2019). "Implementing Monte Carlo Tests with P-value Buckets." *Scandinavian Journal of Statistics*. doi:10.1111/sjos.12434, Accepted for publication, 1703.09305, https://arxiv.org/abs/1703.09305.

Examples

```
J <- matrix(nrow=2,c(0,0.945, 0.94,0.96, 0.955,1))
colnames(J) <- c("low","ok","high")
gen <- function() as.numeric(runif(1)<0.95)
expect_bernoulli(gen,J=J,ok="ok")</pre>
```

expect_mcmc

Test of MCMC chain assuming reversibility of the chain

Description

Test of MCMC steps having the correct stationary distribution assuming reversibility of the chain. Uses ideas from Besag and Clifford (1989) as extended to possible ties in Gandy and Scott (2020).

Usage

```
expect_mcmc(object, control = NULL, thinning = NULL, joint = FALSE)
```

object	A list describing the MCMC sampler with the following elements:
	• genprior: A function with no arguments that generates a sample of the prior distribution. No default value.
	• gendata: A function that takes as input the parameter value (of the type generated by genprior) and returns the observed data as an arbitrary R object. No default value.
	• stepMCMC: A function that takes two or three arguments:
	 theta: the current position of the chain (of the same type as produced by the prior),
	- dat: the observed data (of the same type as produced by gendat)
	 thinning: the number of steps the chain should take. 1 corresponds to one step. This argument need not be present.
	 test: Function that takes either one or two arguments, and returns a vector with components which will be used for checking the MCMC sampler. The first argument is interpreted as a parameter value, and if a second argument exists, it is interpreted as a data value. An example is the identity function: function(x) x. Alternatively, if you have access to the model's likelihood function, you could use: function(x,y) likelihood(x,y).
control	a list controlling the algorithm

	 n number of samples to be taken in the first step. Default: 1e3
	• maxseqsteps: Number of sequential attempts to use. Default: 7.
	• incn: Factor by which to multiply n from the second sequential attempt onward. Default: 4.
	• level: bound on the type I error, ie the probability of wrongly rejecting a sampler with the correct distribution. Default: 1e-5.
	• verbose: If TRUE then intermediate messages are printed to the console giving progress updates. Defaults to FALSE.
	• debug: deprecated
	• returnsamples: If FALSE (default) the returnvalue is the first argument as usualy for functions fittingh into the testthat framework. If TRUE then the generated samples are being returned
thinning	Amount of thinning for the MCMC chain. 1 corresponds to no thinning. Default: automatically computed to ensure an autocorrelation of at most 0.5 at lag 1.
joint	If TRUE, then the MCMC uses systematic scan of both data and parameters, rather than just updating parameters with the sampler to be tested. Default: FALSE.

Value

The first argument, invisibly, to allow chaining of expectations.

References

Besag J, Clifford P (1989). "Generalized Monte Carlo significance tests." *Biometrika*, **76**(4), 633–642. doi:10.1093/biomet/76.4.633.

Gandy A, Scott J (2020). "Unit Testing for MCMC and other Monte Carlo Methods." arXiv:2001.06465, https://arxiv.org/abs/2001.06465.

See Also

test_mcmc, expect_mcmc_reversible, sample_direct, sample_indirect

```
object <- list(genprior=function() rnorm(1),
        gendata=function(theta) rnorm(5,theta),
        stepMCMC=function(theta,data,thinning) {
            f <- function(x) prod(dnorm(data,x))*dnorm(x)
            for (i in 1:thinning) {
                thetanew = rnorm(1,mean=theta,sd=1)
                if (runif(1)<f(thetanew)/f(theta))
                theta <- thetanew
            }
                theta
            }
                theta
            }
                theta
            }
                theta
```

expect_mcmc_reversible

Test of MCMC chain assuming reversibility of the chain

Description

Test of MCMC steps having the correct stationary distribution assuming reversibility of the chain. Uses ideas from Besag and Clifford (1989) as extended to possible ties in Gandy and Scott (2020).

Usage

```
expect_mcmc_reversible(
   object,
   control = NULL,
   thinning = NULL,
   nsteps = 10,
   p = 1,
   tolerance = 1e-08
)
```

object	A list describing the MCMC sampler with the following elements:
	• genprior: A function with no arguments that generates a sample of the prior distribution. No default value.
	• gendata: A function that takes as input the parameter value (of the type generated by genprior) and returns the observed data as an arbitrary R object. No default value.
	• stepMCMC: A function that takes two or three arguments:
	 theta: the current position of the chain (of the same type as produced by the prior),
	- dat: the observed data (of the same type as produced by gendat)
	 thinning: the number of steps the chain should take. 1 corresponds to one step. This argument need not be present.
	 test: Function that takes either one or two arguments, and returns a vector with components which will be used for checking the MCMC sampler. The first argument is interpreted as a parameter value, and if a second argument exists, it is interpreted as a data value. An example is the identity function: function(x) x. Alternatively, if you have access to the model's likelihood function, you could use: function(x,y) likelihood(x,y).
control	a list controlling the algorithm
	 n number of samples to be taken in the first step. Default: 1e3 maxseqsteps: Number of sequential attempts to use. Default: 7.
	• incn: Factor by which to multiply n from the second sequential attempt onward. Default: 4.

	 level: bound on the type I error, ie the probability of wrongly rejecting a sampler with the correct distribution. Default: 1e-5. verbose: If TRUE then intermediate messages are printed to the console
	giving progress updates. Defaults to FALSE.
	debug: deprecated
	• returnsamples: If FALSE (default) the returnvalue is the first argument as usualy for functions fittingh into the testthat framework. If TRUE then the generated samples are being returned
thinning	Amount of thinning for the MCMC chain. 1 corresponds to no thinning. De- fault: automatically computed to ensure an autocorrelation of at most 0.5 at lag 1.
nsteps	Number of steps of the chain to use. Default: 10.
р	The probability with which the MCMC updates the parameter as opposed to the data in a given step. If less than 1.0, then the MCMC is a random scan on both data and parameters. Default: 1.0.
tolerance	Absolute error where value of the samplers are treated as equal. Default: 1e-8.

Value

The first argument, invisibly, to allow chaining of expectations.

References

Besag J, Clifford P (1989). "Generalized Monte Carlo significance tests." *Biometrika*, **76**(4), 633–642. doi:10.1093/biomet/76.4.633.

Gandy A, Scott J (2020). "Unit Testing for MCMC and other Monte Carlo Methods." arXiv:2001.06465, https://arxiv.org/abs/2001.06465.

See Also

expect_mcmc, test_mcmc_reversible, sample_rank

expect_mc_iid_chisq Test iid samples for correct cdf using chisq test

Description

Test if samples are behaving like an iid sample from a given distribution via the chisq test and a sequential approach. Only works for discrete distributions taking finitely many values.

Usage

expect_mc_iid_chisq(object, prob, control = NULL)

Arguments

object	A function taking one argument - that generates n univariate iid samples.
prob	A vector of probabilities for finitely many consecutive integers from 0 onward.
control	a list controlling the algorithm
	 n number of samples to be taken in the first step. Default: 1e3 maxseqsteps: Number of sequential attempts to use. Default: 7. incn: Factor by which to multiply n from the second sequential attempt onward. Default: 4. level: bound on the type I error, ie the probability of wrongly rejecting a sampler with the correct distribution. Default: 1e-5. verbose: If TRUE then intermediate messages are printed to the console giving progress updates. Defaults to FALSE.
	• debug: deprecated
	• returnsamples: If FALSE (default) the returnvalue is the first argument as usualy for functions fittingh into the testthat framework. If TRUE then the generated samples are being returned

Value

The first argument, invisibly, to allow chaining of expectations.

```
sampler <- function(n) rbinom(n,prob=0.6,size=5)
expect_mc_iid_chisq(sampler, dbinom(0:5,prob=0.6,size=5))
testthat::expect_error(expect_mc_iid_chisq(sampler,
    dbinom(0:5,prob=0.63,size=5)))</pre>
```

expect_mc_iid_ks Test iid samp

Description

Test if samples are behaving like an iid sample from a given CDF via the KS test and a sequential approach. Only works for continuous CDFs. Will report a warning if values are discrete

Usage

expect_mc_iid_ks(object, cdf, control = NULL)

Arguments

object	A function taking one argument - that generates n univariate iid samples.
cdf	A univariate cumulative distribution function, taking exactly one argument.
control	a list controlling the algorithm
	 n number of samples to be taken in the first step. Default: 1e3 maxseqsteps: Number of sequential attempts to use. Default: 7. incn: Factor by which to multiply n from the second sequential attempt onward. Default: 4. level: bound on the type I error, ie the probability of wrongly rejecting a sampler with the correct distribution. Default: 1e-5. verbose: If TRUE then intermediate messages are printed to the console giving progress updates. Defaults to FALSE. debug: deprecated returnsamples: If FALSE (default) the returnvalue is the first argument as usualy for functions fittingh into the testthat framework. If TRUE then the generated samples are being returned

Value

The first argument, invisibly, to allow chaining of expectations.

```
sampler <- function(n) rnorm(n)
expect_mc_iid_ks(sampler, pnorm)</pre>
```

expect_mc_iid_mean Test iid samples for correct mean

Description

Test if samples are coming from a specific mean. Not guaranteed to be exact, as it estimates the standard error from the sample.

Usage

expect_mc_iid_mean(object, mean, control = NULL)

Arguments

object	A function taking one argument - that generates n univariate iid samples.
mean	The expected mean of the samples returned from object.
control	a list controlling the algorithm
	 n number of samples to be taken in the first step. Default: 1e3 maxseqsteps: Number of sequential attempts to use. Default: 7. incn: Factor by which to multiply n from the second sequential attempt onward. Default: 4. level: bound on the type I error, ie the probability of wrongly rejecting a sampler with the correct distribution. Default: 1e-5. verbose: If TRUE then intermediate messages are printed to the console giving progress updates. Defaults to FALSE. debug: deprecated returnsamples: If FALSE (default) the returnvalue is the first argument as usualy for functions fittingh into the testthat framework. If TRUE then the generated samples are being returned

Value

The first argument, invisibly, to allow chaining of expectations.

```
sampler <- function(n) rbinom(n,prob=0.6,size=5)
expect_mc_iid_mean(sampler, mean=3)
testthat::expect_error(expect_mc_iid_mean(sampler, mean=2))</pre>
```

expect_mc_test

Description

Requires as input a generic test that for a given sample size provides a vector of p-values. Aims to reject if these are not from the null. Guarantees a bound on the type I error rate.

Usage

expect_mc_test(object, control = NULL, npval = 1)

Arguments

object	A function taking one argument n, which should be the sample size to use for the test. The function should return a named list with at least one element, "pvals", which is a vector of p-values.
control	a list controlling the algorithm
	• n number of samples to be taken in the first step. Default: 1e3
	• maxseqsteps: Number of sequential attempts to use. Default: 7.
	• incn: Factor by which to multiply n from the second sequential attempt onward. Default: 4.
	• level: bound on the type I error, ie the probability of wrongly rejecting a sampler with the correct distribution. Default: 1e-5.
	• verbose: If TRUE then intermediate messages are printed to the console giving progress updates. Defaults to FALSE.
	• debug: deprecated
	• returnsamples: If FALSE (default) the returnvalue is the first argument as usualy for functions fittingh into the testthat framework. If TRUE then the generated samples are being returned
npval	number of p-values returned by the test. A Bonferroni correction is applied if >1. Default: 1.

Value

The first argument is returned, invisibly, to allow chaining of expectations within testthat (if control\$returnsamples==FALSE). Otherwise, a named list containing outputs form the sequential tests, for example samples and pvalues. Each element is itself a list, of length equal to the number of sequential stages performed.

mc_test

```
}
expect_mc_test(pvalsampler)
```

mc_test

Test if p-values are coming from the null using a sequential approach.

Description

Requires as input a generic test that for a given sample size provides a vector of p-values. Aims to reject if these are not from the null. Guarantees a bound on the type I error rate.

Usage

mc_test(object, control = NULL, npval = 1)

Arguments

object	A function taking one argument n, which should be the sample size to use for the test. The function should return a named list with at least one element, "pvals", which is a vector of p-values.
control	a list controlling the algorithm
	• n number of samples to be taken in the first step. Default: 1e3
	• maxseqsteps: Number of sequential attempts to use. Default: 7.
	• incn: Factor by which to multiply n from the second sequential attempt onward. Default: 4.
	• level: bound on the type I error, ie the probability of wrongly rejecting a sampler with the correct distribution. Default: 1e-5.
	• verbose: If TRUE then intermediate messages are printed to the console giving progress updates. Defaults to FALSE.
	• debug: deprecated
npval	number of p-values returned by the test. A Bonferroni correction is applied if >1. Default: 1.

Value

A named list containing data about the sequential tests, for example samples and pvalues. Each element is itself a list, of length equal to the number of sequential stages performed.

Examples

mc_test(pvalsampler)

```
plot.mcunit_mc_iid_mean
```

Plot samples returned from expect_mc_iid_mean

Description

Creates a plot for graphical testing of uniformity of rank statistics. This procedure was first described in XXX.

Usage

```
## S3 method for class 'mcunit_mc_iid_mean'
plot(x, ...)
```

Arguments

х	An object of class "mcunit_mc_iid_mean", generated using expect_mc_iid_mean
	with option control=list(returnsamples=TRUE)
	other parameters to satisify S3 method consistency - will be ignored.

Value

An object of class "ggplot", which can be further modified.

See Also

expect_mc_iid_mean

Description

Creates a plot for graphical testing of uniformity of rank statistics. This procedure was first described in XXX.

Usage

```
## S3 method for class 'mcunit_ranktest'
plot(x, stage = length(x$ranks), ...)
```

Arguments

x	An object of class "mcunit_ranktest", generated using <pre>expect_mcmc_reversible</pre> with option control=list(returnsamples=TRUE)
stage	x contains sample ranks from each stage in the sequential tests. This determines which test in the sequence of sequential test to use. By default, the final stage is used.
	other parameters to satisify S3 method consistency - will be ignored.

Value

An object of class "ggplot", which can be further modified.

See Also

expect_mcmc_reversible

plot_sample_acfs Simple plot of sample autocorrelations for a given kernel

Description

Uses sample_acfs() to estimate autocorrelation as a function of lag. This is done for a number of different sample parameters and data. The resulting estimates are then plotted.

Usage

```
plot_sample_acfs(
   object,
   paths = 50,
   alpha = 0.3,
   steps = 500,
   thinning = 1,
   ...
)
```

Arguments

object

A list describing the MCMC sampler with the following elements:

- genprior: A function with no arguments that generates a sample of the prior distribution. No default value.
- gendata: A function that takes as input the parameter value (of the type generated by genprior) and returns the observed data as an arbitrary R object. No default value.
- stepMCMC: A function that takes two or three arguments:
 - theta: the current position of the chain (of the same type as produced by the prior),

	 dat: the observed data (of the same type as produced by gendat) thinning: the number of steps the chain should take. 1 corresponds to one step. This argument need not be present.
	• test: Function that takes either one or two arguments, and returns a vector with components which will be used for checking the MCMC sampler. The first argument is interpreted as a parameter value, and if a second argument exists, it is interpreted as a data value. An example is the identity function: function(x) x. Alternatively, if you have access to the model's likelihood function, you could use: function(x,y) likelihood(x,y).
paths	Number of MCMC chains on which to estimate autocorrelation
alpha	Passes to geom_line and geom_point.
steps	Number of steps to take within each chain
thinning	Amount of thinning for the MCMC chain. 1 corresponds to no thinning. De- fault: automatically computed to ensure an autocorrelation of at most 0.5 at lag 1.
	Additional arguments to pass to acf.

Value

A ggplot object

print.mcunit_mc_test Printing results from function 'mc_test'.

Description

Printing results from function 'mc_test'.

Usage

```
## S3 method for class 'mcunit_mc_test'
print(x, ...)
```

х	object to be printed
	additional parameters passed to the function

sample_acfs

Description

Estimate autocorrelation for one chain applied to one sample of parameters and data

Usage

```
sample_acfs(object, paths = 50, steps = 500, thinning = 1, ...)
```

Arguments

object	A list describing the MCMC sampler with the following elements:
	• genprior: A function with no arguments that generates a sample of the prior distribution. No default value.
	• gendata: A function that takes as input the parameter value (of the type generated by genprior) and returns the observed data as an arbitrary R object. No default value.
	• stepMCMC: A function that takes two or three arguments:
	 theta: the current position of the chain (of the same type as produced by the prior),
	- dat: the observed data (of the same type as produced by gendat)
	 thinning: the number of steps the chain should take. 1 corresponds to one step. This argument need not be present.
	• test: Function that takes either one or two arguments, and returns a vector with components which will be used for checking the MCMC sampler. The first argument is interpreted as a parameter value, and if a second argument exists, it is interpreted as a data value. An example is the identity function: function(x) x. Alternatively, if you have access to the model's likelihood function, you could use: function(x,y) likelihood(x,y).
paths	Number of MCMC chains on which to estimate autocorrelation
steps	Number of steps to take within each chain
thinning	Amount of thinning for the MCMC chain. 1 corresponds to no thinning. Default: automatically computed to ensure an autocorrelation of at most 0.5 at lag 1.
	Additional arguments to pass to acf.

Value

A dataframe giving estimated autocorrelation per chain, per test statistic

sample_direct

Description

Sample one realisation of the test statistics by drawing data and paramaters directly from generative model, then applying the test statistics.

Usage

sample_direct(object)

Arguments

object

A list describing the MCMC sampler with the following elements:

- genprior: A function with no arguments that generates a sample of the prior distribution. No default value.
- gendata: A function that takes as input the parameter value (of the type generated by genprior) and returns the observed data as an arbitrary R object. No default value.
- stepMCMC: A function that takes two or three arguments:
 - theta: the current position of the chain (of the same type as produced by the prior),
 - dat: the observed data (of the same type as produced by gendat)
 - thinning: the number of steps the chain should take. 1 corresponds to one step. This argument need not be present.
- test: Function that takes either one or two arguments, and returns a vector with components which will be used for checking the MCMC sampler. The first argument is interpreted as a parameter value, and if a second argument exists, it is interpreted as a data value. An example is the identity function: function(x) x. Alternatively, if you have access to the model's likelihood function, you could use: function(x,y) likelihood(x,y).

Value

A vector-valued sample from the test statistic

See Also

sample_indirect, test_mcmc, expect_mcmc

sample_indirect

Description

Sample one realisation of the test statistics indirectly by first drawing data and paramaters from the generative model, then applying MCMC to propagate the sample.

Usage

sample_indirect(object, thinning, joint)

Arguments

object	A list describing the MCMC sampler with the following elements:
	• genprior: A function with no arguments that generates a sample of the prior distribution. No default value.
	• gendata: A function that takes as input the parameter value (of the type generated by genprior) and returns the observed data as an arbitrary R object. No default value.
	• stepMCMC: A function that takes two or three arguments:
	 theta: the current position of the chain (of the same type as produced by the prior),
	- dat: the observed data (of the same type as produced by gendat)
	 thinning: the number of steps the chain should take. 1 corresponds to one step. This argument need not be present.
	• test: Function that takes either one or two arguments, and returns a vector with components which will be used for checking the MCMC sampler. The first argument is interpreted as a parameter value, and if a second argument exists, it is interpreted as a data value. An example is the identity function: function(x) x. Alternatively, if you have access to the model's likelihood function, you could use: function(x,y) likelihood(x,y).
thinning	Amount of thinning for the MCMC chain. 1 corresponds to no thinning. Default: automatically computed to ensure an autocorrelation of at most 0.5 at lag 1.
joint	If TRUE, then the MCMC uses systematic scan of both data and parameters, rather than just updating parameters with the sampler to be tested. Default: FALSE.

Value

A vector-valued sample from the test statistic

See Also

sample_direct, test_mcmc, expect_mcmc

sample_rank

Draws a sample rank statistic using the method described by Algorithm 2 in Gandy and Scott (2020).

Description

Used by test_mcmc_reversible to formally test uniformity of rank statistics.

Usage

```
sample_rank(object, nsteps = 10, thinning = 1, p = 1, tolerance = 1e-08)
```

Arguments

object	A list describing the MCMC sampler with the following elements:
	• genprior: A function with no arguments that generates a sample of the prior distribution. No default value.
	• gendata: A function that takes as input the parameter value (of the type generated by genprior) and returns the observed data as an arbitrary R object. No default value.
	• stepMCMC: A function that takes two or three arguments:
	 theta: the current position of the chain (of the same type as produced by the prior),
	- dat: the observed data (of the same type as produced by gendat)
	 thinning: the number of steps the chain should take. 1 corresponds to one step. This argument need not be present.
	• test: Function that takes either one or two arguments, and returns a vector with components which will be used for checking the MCMC sampler. The first argument is interpreted as a parameter value, and if a second argument exists, it is interpreted as a data value. An example is the identity function: function(x) x. Alternatively, if you have access to the model's likelihood function, you could use: function(x,y) likelihood(x,y).
nsteps	Number of steps of the chain to use. Default: 10.
thinning	Amount of thinning for the MCMC chain. 1 corresponds to no thinning. De- fault: automatically computed to ensure an autocorrelation of at most 0.5 at lag 1.
р	The probability with which the MCMC updates the parameter as opposed to the data in a given step. If less than 1.0, then the MCMC is a random scan on both data and parameters. Default: 1.0.
tolerance	Absolute error where value of the samplers are treated as equal. Default: 1e-8.

Value

An integer between 1 and nsteps

test_mcmc

References

Gandy A, Scott J (2020). "Unit Testing for MCMC and other Monte Carlo Methods." arXiv:2001.06465, https://arxiv.org/abs/2001.06465.

See Also

test_mcmc_reversible, expect_mcmc_reversible

test_mcmc

Test of MCMC chain

Description

Test of MCMC steps having the correct stationary distribution without assuming reversibility of the chain. Details of this are in Gandy and Scott (2020); it uses ideas described in the appendix of Gandy and Veraart (2017).

Usage

```
test_mcmc(object, control = NULL, thinning = NULL, joint = FALSE)
```

object	A list describing the MCMC sampler with the following elements:
	• genprior: A function with no arguments that generates a sample of the prior distribution. No default value.
	• gendata: A function that takes as input the parameter value (of the type generated by genprior) and returns the observed data as an arbitrary R object. No default value.
	• stepMCMC: A function that takes two or three arguments:
	 theta: the current position of the chain (of the same type as produced by the prior),
	- dat: the observed data (of the same type as produced by gendat)
	 thinning: the number of steps the chain should take. 1 corresponds to one step. This argument need not be present.
	• test: Function that takes either one or two arguments, and returns a vector with components which will be used for checking the MCMC sampler. The first argument is interpreted as a parameter value, and if a second argument exists, it is interpreted as a data value. An example is the identity function: function(x) x. Alternatively, if you have access to the model's likelihood function, you could use: function(x,y) likelihood(x,y).
control	a list controlling the algorithm
	n number of samples to be taken in the first step. Default: 1e3maxseqsteps: Number of sequential attempts to use. Default: 7.

	• incn: Factor by which to multiply n from the second sequential attempt onward. Default: 4.
	• level: bound on the type I error, ie the probability of wrongly rejecting a sampler with the correct distribution. Default: 1e-5.
	• verbose: If TRUE then intermediate messages are printed to the console giving progress updates. Defaults to FALSE.
	• debug: deprecated
	• returnsamples: If FALSE (default) the returnvalue is the first argument as usualy for functions fittingh into the testthat framework. If TRUE then the generated samples are being returned
thinning	Amount of thinning for the MCMC chain. 1 corresponds to no thinning. Default: automatically computed to ensure an autocorrelation of at most 0.5 at lag 1.
joint	If TRUE, then the MCMC uses systematic scan of both data and parameters, rather than just updating parameters with the sampler to be tested. Default: FALSE.

Value

The first argument, invisibly, to allow chaining of expectations.

References

Gandy A, Scott J (2020). "Unit Testing for MCMC and other Monte Carlo Methods." arXiv:2001.06465, https://arxiv.org/abs/2001.06465.

Gandy A, Veraart LAM (2017). "A Bayesian Methodology for Systemic Risk Assessment in Financial Networks." Management Science, 63(12), 4428-4446. doi:10.1287/mnsc.2016.2546.

See Also

expect_mcmc, test_mcmc_reversible, sample_direct, sample_indirect

test_mcmc_reversible Test of MCMC chain assuming reversibility of the chain

Description

Test of MCMC steps having the correct stationary distribution assuming reversibility of the chain. Uses ideas from Besag and Clifford (1989) as extended to possible ties in Gandy and Scott (2020).

test_mcmc_reversible

Usage

```
test_mcmc_reversible(
   object,
   control = NULL,
   thinning = NULL,
   nsteps = 10,
   p = 1,
   tolerance = 1e-08
```

```
)
```

object	A list describing the MCMC sampler with the following elements:
	• genprior: A function with no arguments that generates a sample of the prior distribution. No default value.
	• gendata: A function that takes as input the parameter value (of the type generated by genprior) and returns the observed data as an arbitrary R object. No default value.
	• stepMCMC: A function that takes two or three arguments:
	 theta: the current position of the chain (of the same type as produced by the prior),
	- dat: the observed data (of the same type as produced by gendat)
	 thinning: the number of steps the chain should take. 1 corresponds to one step. This argument need not be present.
	• test: Function that takes either one or two arguments, and returns a vector with components which will be used for checking the MCMC sampler. The first argument is interpreted as a parameter value, and if a second argument exists, it is interpreted as a data value. An example is the identity function: function(x) x. Alternatively, if you have access to the model's likelihood function, you could use: function(x,y) likelihood(x,y).
control	a list controlling the algorithm
	• n number of samples to be taken in the first step. Default: 1e3
	• maxseqsteps: Number of sequential attempts to use. Default: 7.
	• incn: Factor by which to multiply n from the second sequential attempt onward. Default: 4.
	• level: bound on the type I error, ie the probability of wrongly rejecting a sampler with the correct distribution. Default: 1e-5.
	• verbose: If TRUE then intermediate messages are printed to the console giving progress updates. Defaults to FALSE.
	debug: deprecated
	• returnsamples: If FALSE (default) the returnvalue is the first argument as usualy for functions fittingh into the testthat framework. If TRUE then the generated samples are being returned
thinning	Amount of thinning for the MCMC chain. 1 corresponds to no thinning. Default: automatically computed to ensure an autocorrelation of at most 0.5 at lag 1.

nsteps	Number of steps of the chain to use. Default: 10.
р	The probability with which the MCMC updates the parameter as opposed to the data in a given step. If less than 1.0, then the MCMC is a random scan on both data and parameters. Default: 1.0.
tolerance	Absolute error where value of the samplers are treated as equal. Default: 1e-8.

Value

The first argument, invisibly, to allow chaining of expectations.

References

Besag J, Clifford P (1989). "Generalized Monte Carlo significance tests." *Biometrika*, **76**(4), 633–642. doi:10.1093/biomet/76.4.633.

Gandy A, Scott J (2020). "Unit Testing for MCMC and other Monte Carlo Methods." arXiv:2001.06465, https://arxiv.org/abs/2001.06465.

See Also

test_mcmc, expect_mcmc_reversible, sample_rank

```
object <- list(genprior=function() rnorm(1),</pre>
               gendata=function(theta) rnorm(5,theta),
               stepMCMC=function(theta,data,thinning) {
                   f <- function(x) prod(dnorm(data,x))*dnorm(x)</pre>
                   for (i in 1:thinning) {
                      thetanew = rnorm(1,mean=theta,sd=1)
                      if (runif(1)<f(thetanew)/f(theta))</pre>
                      theta <- thetanew
                   }
                   theta
               },
               test=function(x) x
                )
expect_mcmc_reversible(object)
## without thinning
object$stepMCMC = function(theta,data){
     f <- function(x) prod(dnorm(data, x))*dnorm(x)</pre>
     thetanew = rnorm(1,mean=theta,sd=1)
     if (runif(1)<f(thetanew)/f(theta))</pre>
       theta <- thetanew
     theta
}
expect_mcmc_reversible(object)
```

Index

acf, *14*, *15*

expect_bernoulli, 2
expect_mc_iid_chisq, 7
expect_mc_iid_ks, 8
expect_mc_iid_mean, 9, 12
expect_mc_test, 10
expect_mcmc, 3, 6, 16, 17, 20
expect_mcmc_reversible, 4, 5, 12, 13, 19, 22

geom_line, 14
geom_point, 14

mc_test, 11

plot.mcunit_mc_iid_mean, 12
plot.mcunit_ranktest, 12
plot_sample_acfs, 13
print.mcunit_mc_test, 14

sample_acfs, 15
sample_direct, 4, 16, 17, 20
sample_indirect, 4, 16, 17, 20
sample_rank, 6, 18, 22

test_mcmc, 4, 16, 17, 19, 22
test_mcmc_reversible, 6, 19, 20, 20