
Package: mcunit (via r-universe)
September 8, 2024

Title Unit Tests for MC Methods

Version 0.3.4

Maintainer Axel Gandy <a.gandy@imperial.ac.uk>

Description Unit testing for Monte Carlo methods, particularly Markov
Chain Monte Carlo (MCMC) methods, are implemented as extensions
of the 'testthat' package. The MCMC methods check whether the
MCMC chain has the correct invariant distribution. They do not
check other properties of successful samplers such as whether
the chain can reach all points, i.e. whether is recurrent. The
tests require the ability to sample from the prior and to run
steps of the MCMC chain. The methodology is described in Gandy
and Scott (2020) <arXiv:2001.06465>.

URL https://bitbucket.org/agandy/mcunit/

License GPL-3

Encoding UTF-8

Depends R (>= 3.1)

Imports testthat (>= 2.3), stats, rlang, Rdpack (>= 0.7), simctest (>=
2.6), checkmate, parallel, ggplot2, ggpubr, dplyr, tidyr,
methods, utils, tibble

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.1.2

Roxygen list(markdown = TRUE)

RdMacros Rdpack

Repository https://agandy.r-universe.dev

RemoteUrl https://bitbucket.org/agandy/mcunit

RemoteRef HEAD

RemoteSha 82bb3299390a6491c1dec03f9d6a7d2389ce1329

1

https://arxiv.org/abs/2001.06465
https://bitbucket.org/agandy/mcunit/

2 expect_bernoulli

Contents
expect_bernoulli . 2
expect_mcmc . 3
expect_mcmc_reversible . 5
expect_mc_iid_chisq . 7
expect_mc_iid_ks . 8
expect_mc_iid_mean . 9
expect_mc_test . 10
mc_test . 11
plot.mcunit_mc_iid_mean . 12
plot.mcunit_ranktest . 12
plot_sample_acfs . 13
print.mcunit_mc_test . 14
sample_acfs . 15
sample_direct . 16
sample_indirect . 17
sample_rank . 18
test_mcmc . 19
test_mcmc_reversible . 20

Index 23

expect_bernoulli Test Bernoulli distribution using buckets

Description

Test if the success probability of a Bernoulli experiment lies within a desired ’bucket’. This used
the sequential procedure described in Gandy et al. (2019).

Usage

expect_bernoulli(object, J, ok, epsilon = 0.001, ...)

Arguments

object Function that performs one sampling step. Returns 0 or 1.

J Buckets to use. A matrix with two rows, each column describes an interval
bucket. Column names give names for the bucket(s).

ok Name of bucket(s) that pass the Unit test.

epsilon Error bound.

... Further parameters to be passed on to ’mctest’.

Value

The first argument, invisibly, to allow chaining of expectations.

expect_mcmc 3

References

Gandy A, Hahn G, Ding D (2019). “Implementing Monte Carlo Tests with P-value Buckets.”
Scandinavian Journal of Statistics. doi:10.1111/sjos.12434, Accepted for publication, 1703.09305,
https://arxiv.org/abs/1703.09305.

Examples

J <- matrix(nrow=2,c(0,0.945, 0.94,0.96, 0.955,1))
colnames(J) <- c("low","ok","high")
gen <- function() as.numeric(runif(1)<0.95)
expect_bernoulli(gen,J=J,ok="ok")

expect_mcmc Test of MCMC chain assuming reversibility of the chain

Description

Test of MCMC steps having the correct stationary distribution assuming reversibility of the chain.
Uses ideas from Besag and Clifford (1989) as extended to possible ties in Gandy and Scott (2020).

Usage

expect_mcmc(object, control = NULL, thinning = NULL, joint = FALSE)

Arguments

object A list describing the MCMC sampler with the following elements:

• genprior: A function with no arguments that generates a sample of the prior
distribution. No default value.

• gendata: A function that takes as input the parameter value (of the type gen-
erated by genprior) and returns the observed data as an arbitrary R object.
No default value.

• stepMCMC: A function that takes two or three arguments:
– theta: the current position of the chain (of the same type as produced

by the prior),
– dat: the observed data (of the same type as produced by gendat)
– thinning: the number of steps the chain should take. 1 corresponds to

one step. This argument need not be present.
• test: Function that takes either one or two arguments, and returns a vector

with components which will be used for checking the MCMC sampler. The
first argument is interpreted as a parameter value, and if a second argument
exists, it is interpreted as a data value. An example is the identity function:
function(x) x. Alternatively, if you have access to the model’s likelihood
function, you could use: function(x,y) likelihood(x,y).

control a list controlling the algorithm

https://doi.org/10.1111/sjos.12434
https://arxiv.org/abs/1703.09305

4 expect_mcmc

• n number of samples to be taken in the first step. Default: 1e3
• maxseqsteps: Number of sequential attempts to use. Default: 7.
• incn: Factor by which to multiply n from the second sequential attempt

onward. Default: 4.
• level: bound on the type I error, ie the probability of wrongly rejecting a

sampler with the correct distribution. Default: 1e-5.
• verbose: If TRUE then intermediate messages are printed to the console

giving progress updates. Defaults to FALSE.
• debug: deprecated
• returnsamples: If FALSE (default) the returnvalue is the first argument as

usualy for functions fittingh into the testthat framework. If TRUE then the
generated samples are being returned

thinning Amount of thinning for the MCMC chain. 1 corresponds to no thinning. De-
fault: automatically computed to ensure an autocorrelation of at most 0.5 at lag
1.

joint If TRUE, then the MCMC uses systematic scan of both data and parameters,
rather than just updating parameters with the sampler to be tested. Default:
FALSE.

Value

The first argument, invisibly, to allow chaining of expectations.

References

Besag J, Clifford P (1989). “Generalized Monte Carlo significance tests.” Biometrika, 76(4), 633–
642. doi:10.1093/biomet/76.4.633.

Gandy A, Scott J (2020). “Unit Testing for MCMC and other Monte Carlo Methods.” arXiv:2001.06465,
https://arxiv.org/abs/2001.06465.

See Also

test_mcmc, expect_mcmc_reversible, sample_direct, sample_indirect

Examples

object <- list(genprior=function() rnorm(1),
gendata=function(theta) rnorm(5,theta),
stepMCMC=function(theta,data,thinning) {

f <- function(x) prod(dnorm(data,x))*dnorm(x)
for (i in 1:thinning) {

thetanew = rnorm(1,mean=theta,sd=1)
if (runif(1)<f(thetanew)/f(theta))
theta <- thetanew

}
theta

}
)

expect_mcmc(object)

https://doi.org/10.1093/biomet/76.4.633
https://arxiv.org/abs/2001.06465

expect_mcmc_reversible 5

expect_mcmc_reversible

Test of MCMC chain assuming reversibility of the chain

Description

Test of MCMC steps having the correct stationary distribution assuming reversibility of the chain.
Uses ideas from Besag and Clifford (1989) as extended to possible ties in Gandy and Scott (2020).

Usage

expect_mcmc_reversible(
object,
control = NULL,
thinning = NULL,
nsteps = 10,
p = 1,
tolerance = 1e-08

)

Arguments

object A list describing the MCMC sampler with the following elements:

• genprior: A function with no arguments that generates a sample of the prior
distribution. No default value.

• gendata: A function that takes as input the parameter value (of the type gen-
erated by genprior) and returns the observed data as an arbitrary R object.
No default value.

• stepMCMC: A function that takes two or three arguments:
– theta: the current position of the chain (of the same type as produced

by the prior),
– dat: the observed data (of the same type as produced by gendat)
– thinning: the number of steps the chain should take. 1 corresponds to

one step. This argument need not be present.
• test: Function that takes either one or two arguments, and returns a vector

with components which will be used for checking the MCMC sampler. The
first argument is interpreted as a parameter value, and if a second argument
exists, it is interpreted as a data value. An example is the identity function:
function(x) x. Alternatively, if you have access to the model’s likelihood
function, you could use: function(x,y) likelihood(x,y).

control a list controlling the algorithm

• n number of samples to be taken in the first step. Default: 1e3
• maxseqsteps: Number of sequential attempts to use. Default: 7.
• incn: Factor by which to multiply n from the second sequential attempt

onward. Default: 4.

6 expect_mcmc_reversible

• level: bound on the type I error, ie the probability of wrongly rejecting a
sampler with the correct distribution. Default: 1e-5.

• verbose: If TRUE then intermediate messages are printed to the console
giving progress updates. Defaults to FALSE.

• debug: deprecated
• returnsamples: If FALSE (default) the returnvalue is the first argument as

usualy for functions fittingh into the testthat framework. If TRUE then the
generated samples are being returned

thinning Amount of thinning for the MCMC chain. 1 corresponds to no thinning. De-
fault: automatically computed to ensure an autocorrelation of at most 0.5 at lag
1.

nsteps Number of steps of the chain to use. Default: 10.

p The probability with which the MCMC updates the parameter as opposed to the
data in a given step. If less than 1.0, then the MCMC is a random scan on both
data and parameters. Default: 1.0.

tolerance Absolute error where value of the samplers are treated as equal. Default: 1e-8.

Value

The first argument, invisibly, to allow chaining of expectations.

References

Besag J, Clifford P (1989). “Generalized Monte Carlo significance tests.” Biometrika, 76(4), 633–
642. doi:10.1093/biomet/76.4.633.

Gandy A, Scott J (2020). “Unit Testing for MCMC and other Monte Carlo Methods.” arXiv:2001.06465,
https://arxiv.org/abs/2001.06465.

See Also

expect_mcmc, test_mcmc_reversible, sample_rank

Examples

object <- list(genprior=function() rnorm(1),
gendata=function(theta) rnorm(5,theta),
stepMCMC=function(theta,data) {

f <- function(x) prod(dnorm(data,x))*dnorm(x)
thetanew = rnorm(1,mean=theta,sd=1)
if (runif(1)<f(thetanew)/f(theta))

theta <- thetanew
theta

},
test=function(x) x
)

expect_mcmc_reversible(object)

https://doi.org/10.1093/biomet/76.4.633
https://arxiv.org/abs/2001.06465

expect_mc_iid_chisq 7

expect_mc_iid_chisq Test iid samples for correct cdf using chisq test

Description

Test if samples are behaving like an iid sample from a given distribution via the chisq test and a
sequential approach. Only works for discrete distributions taking finitely many values.

Usage

expect_mc_iid_chisq(object, prob, control = NULL)

Arguments

object A function taking one argument - that generates n univariate iid samples.

prob A vector of probabilities for finitely many consecutive integers from 0 onward.

control a list controlling the algorithm

• n number of samples to be taken in the first step. Default: 1e3
• maxseqsteps: Number of sequential attempts to use. Default: 7.
• incn: Factor by which to multiply n from the second sequential attempt

onward. Default: 4.
• level: bound on the type I error, ie the probability of wrongly rejecting a

sampler with the correct distribution. Default: 1e-5.
• verbose: If TRUE then intermediate messages are printed to the console

giving progress updates. Defaults to FALSE.
• debug: deprecated
• returnsamples: If FALSE (default) the returnvalue is the first argument as

usualy for functions fittingh into the testthat framework. If TRUE then the
generated samples are being returned

Value

The first argument, invisibly, to allow chaining of expectations.

Examples

sampler <- function(n) rbinom(n,prob=0.6,size=5)
expect_mc_iid_chisq(sampler, dbinom(0:5,prob=0.6,size=5))
testthat::expect_error(expect_mc_iid_chisq(sampler,
dbinom(0:5,prob=0.63,size=5)))

8 expect_mc_iid_ks

expect_mc_iid_ks Test iid samples for correct cdf using KS test

Description

Test if samples are behaving like an iid sample from a given CDF via the KS test and a sequential
approach. Only works for continuous CDFs. Will report a warning if values are discrete

Usage

expect_mc_iid_ks(object, cdf, control = NULL)

Arguments

object A function taking one argument - that generates n univariate iid samples.

cdf A univariate cumulative distribution function, taking exactly one argument.

control a list controlling the algorithm

• n number of samples to be taken in the first step. Default: 1e3

• maxseqsteps: Number of sequential attempts to use. Default: 7.

• incn: Factor by which to multiply n from the second sequential attempt
onward. Default: 4.

• level: bound on the type I error, ie the probability of wrongly rejecting a
sampler with the correct distribution. Default: 1e-5.

• verbose: If TRUE then intermediate messages are printed to the console
giving progress updates. Defaults to FALSE.

• debug: deprecated

• returnsamples: If FALSE (default) the returnvalue is the first argument as
usualy for functions fittingh into the testthat framework. If TRUE then the
generated samples are being returned

Value

The first argument, invisibly, to allow chaining of expectations.

Examples

sampler <- function(n) rnorm(n)
expect_mc_iid_ks(sampler, pnorm)

expect_mc_iid_mean 9

expect_mc_iid_mean Test iid samples for correct mean

Description

Test if samples are coming from a specific mean. Not guaranteed to be exact, as it estimates the
standard error from the sample.

Usage

expect_mc_iid_mean(object, mean, control = NULL)

Arguments

object A function taking one argument - that generates n univariate iid samples.

mean The expected mean of the samples returned from object.

control a list controlling the algorithm

• n number of samples to be taken in the first step. Default: 1e3
• maxseqsteps: Number of sequential attempts to use. Default: 7.
• incn: Factor by which to multiply n from the second sequential attempt

onward. Default: 4.
• level: bound on the type I error, ie the probability of wrongly rejecting a

sampler with the correct distribution. Default: 1e-5.
• verbose: If TRUE then intermediate messages are printed to the console

giving progress updates. Defaults to FALSE.
• debug: deprecated
• returnsamples: If FALSE (default) the returnvalue is the first argument as

usualy for functions fittingh into the testthat framework. If TRUE then the
generated samples are being returned

Value

The first argument, invisibly, to allow chaining of expectations.

Examples

sampler <- function(n) rbinom(n,prob=0.6,size=5)
expect_mc_iid_mean(sampler, mean=3)
testthat::expect_error(expect_mc_iid_mean(sampler, mean=2))

10 expect_mc_test

expect_mc_test Test if p-values are coming from the null using a sequential approach.

Description

Requires as input a generic test that for a given sample size provides a vector of p-values. Aims to
reject if these are not from the null. Guarantees a bound on the type I error rate.

Usage

expect_mc_test(object, control = NULL, npval = 1)

Arguments

object A function taking one argument n, which should be the sample size to use for the
test. The function should return a named list with at least one element, "pvals",
which is a vector of p-values.

control a list controlling the algorithm

• n number of samples to be taken in the first step. Default: 1e3
• maxseqsteps: Number of sequential attempts to use. Default: 7.
• incn: Factor by which to multiply n from the second sequential attempt

onward. Default: 4.
• level: bound on the type I error, ie the probability of wrongly rejecting a

sampler with the correct distribution. Default: 1e-5.
• verbose: If TRUE then intermediate messages are printed to the console

giving progress updates. Defaults to FALSE.
• debug: deprecated
• returnsamples: If FALSE (default) the returnvalue is the first argument as

usualy for functions fittingh into the testthat framework. If TRUE then the
generated samples are being returned

npval number of p-values returned by the test. A Bonferroni correction is applied if
>1. Default: 1.

Value

The first argument is returned, invisibly, to allow chaining of expectations within testthat (if con-
trol$returnsamples==FALSE). Otherwise, a named list containing outputs form the sequential tests,
for example samples and pvalues. Each element is itself a list, of length equal to the number of
sequential stages performed.

Examples

pvalsampler <- function(n) {
x <- sample.int(11,size=n,replace=TRUE)-1;

list(pvals=chisq.test(tabulate(x+1,nbins=11),
p=rep(1/11,11))$p.value)

mc_test 11

}
expect_mc_test(pvalsampler)

mc_test Test if p-values are coming from the null using a sequential approach.

Description

Requires as input a generic test that for a given sample size provides a vector of p-values. Aims to
reject if these are not from the null. Guarantees a bound on the type I error rate.

Usage

mc_test(object, control = NULL, npval = 1)

Arguments

object A function taking one argument n, which should be the sample size to use for the
test. The function should return a named list with at least one element, "pvals",
which is a vector of p-values.

control a list controlling the algorithm

• n number of samples to be taken in the first step. Default: 1e3
• maxseqsteps: Number of sequential attempts to use. Default: 7.
• incn: Factor by which to multiply n from the second sequential attempt

onward. Default: 4.
• level: bound on the type I error, ie the probability of wrongly rejecting a

sampler with the correct distribution. Default: 1e-5.
• verbose: If TRUE then intermediate messages are printed to the console

giving progress updates. Defaults to FALSE.
• debug: deprecated

npval number of p-values returned by the test. A Bonferroni correction is applied if
>1. Default: 1.

Value

A named list containing data about the sequential tests, for example samples and pvalues. Each
element is itself a list, of length equal to the number of sequential stages performed.

Examples

pvalsampler <- function(n) {
x <- sample.int(11,size=n,replace=TRUE)-1;

list(pvals=chisq.test(tabulate(x+1,nbins=11),
p=rep(1/11,11))$p.value)

}

mc_test(pvalsampler)

12 plot.mcunit_ranktest

plot.mcunit_mc_iid_mean

Plot samples returned from expect_mc_iid_mean

Description

Creates a plot for graphical testing of uniformity of rank statistics. This procedure was first de-
scribed in XXX.

Usage

S3 method for class 'mcunit_mc_iid_mean'
plot(x, ...)

Arguments

x An object of class "mcunit_mc_iid_mean", generated using expect_mc_iid_mean
with option control=list(returnsamples=TRUE)

... other parameters to satisify S3 method consistency - will be ignored.

Value

An object of class "ggplot", which can be further modified.

See Also

expect_mc_iid_mean

plot.mcunit_ranktest Plot a histogram of rank statistics returned from a call to
expect_mcmc_reversible

Description

Creates a plot for graphical testing of uniformity of rank statistics. This procedure was first de-
scribed in XXX.

Usage

S3 method for class 'mcunit_ranktest'
plot(x, stage = length(x$ranks), ...)

plot_sample_acfs 13

Arguments

x An object of class "mcunit_ranktest", generated using expect_mcmc_reversible
with option control=list(returnsamples=TRUE)

stage x contains sample ranks from each stage in the sequential tests. This determines
which test in the sequence of sequential test to use. By default, the final stage is
used.

... other parameters to satisify S3 method consistency - will be ignored.

Value

An object of class "ggplot", which can be further modified.

See Also

expect_mcmc_reversible

plot_sample_acfs Simple plot of sample autocorrelations for a given kernel

Description

Uses sample_acfs() to estimate autocorrelation as a function of lag. This is done for a number of
different sample parameters and data. The resulting estimates are then plotted.

Usage

plot_sample_acfs(
object,
paths = 50,
alpha = 0.3,
steps = 500,
thinning = 1,
...

)

Arguments

object A list describing the MCMC sampler with the following elements:

• genprior: A function with no arguments that generates a sample of the prior
distribution. No default value.

• gendata: A function that takes as input the parameter value (of the type gen-
erated by genprior) and returns the observed data as an arbitrary R object.
No default value.

• stepMCMC: A function that takes two or three arguments:
– theta: the current position of the chain (of the same type as produced

by the prior),

14 print.mcunit_mc_test

– dat: the observed data (of the same type as produced by gendat)

– thinning: the number of steps the chain should take. 1 corresponds to
one step. This argument need not be present.

• test: Function that takes either one or two arguments, and returns a vector
with components which will be used for checking the MCMC sampler. The
first argument is interpreted as a parameter value, and if a second argument
exists, it is interpreted as a data value. An example is the identity function:
function(x) x. Alternatively, if you have access to the model’s likelihood
function, you could use: function(x,y) likelihood(x,y).

paths Number of MCMC chains on which to estimate autocorrelation

alpha Passes to geom_line and geom_point.

steps Number of steps to take within each chain

thinning Amount of thinning for the MCMC chain. 1 corresponds to no thinning. De-
fault: automatically computed to ensure an autocorrelation of at most 0.5 at lag
1.

... Additional arguments to pass to acf.

Value

A ggplot object

print.mcunit_mc_test Printing results from function ’mc_test’.

Description

Printing results from function ’mc_test’.

Usage

S3 method for class 'mcunit_mc_test'
print(x, ...)

Arguments

x object to be printed

... additional parameters passed to the function

sample_acfs 15

sample_acfs Estimate autocorrelation for one chain applied to one sample of pa-
rameters and data

Description

Estimate autocorrelation for one chain applied to one sample of parameters and data

Usage

sample_acfs(object, paths = 50, steps = 500, thinning = 1, ...)

Arguments

object A list describing the MCMC sampler with the following elements:

• genprior: A function with no arguments that generates a sample of the prior
distribution. No default value.

• gendata: A function that takes as input the parameter value (of the type gen-
erated by genprior) and returns the observed data as an arbitrary R object.
No default value.

• stepMCMC: A function that takes two or three arguments:
– theta: the current position of the chain (of the same type as produced

by the prior),
– dat: the observed data (of the same type as produced by gendat)
– thinning: the number of steps the chain should take. 1 corresponds to

one step. This argument need not be present.
• test: Function that takes either one or two arguments, and returns a vector

with components which will be used for checking the MCMC sampler. The
first argument is interpreted as a parameter value, and if a second argument
exists, it is interpreted as a data value. An example is the identity function:
function(x) x. Alternatively, if you have access to the model’s likelihood
function, you could use: function(x,y) likelihood(x,y).

paths Number of MCMC chains on which to estimate autocorrelation

steps Number of steps to take within each chain

thinning Amount of thinning for the MCMC chain. 1 corresponds to no thinning. De-
fault: automatically computed to ensure an autocorrelation of at most 0.5 at lag
1.

... Additional arguments to pass to acf.

Value

A dataframe giving estimated autocorrelation per chain, per test statistic

16 sample_direct

sample_direct Generate a sample directly from generative model

Description

Sample one realisation of the test statistics by drawing data and paramaters directly from generative
model, then applying the test statistics.

Usage

sample_direct(object)

Arguments

object A list describing the MCMC sampler with the following elements:

• genprior: A function with no arguments that generates a sample of the prior
distribution. No default value.

• gendata: A function that takes as input the parameter value (of the type gen-
erated by genprior) and returns the observed data as an arbitrary R object.
No default value.

• stepMCMC: A function that takes two or three arguments:
– theta: the current position of the chain (of the same type as produced

by the prior),
– dat: the observed data (of the same type as produced by gendat)
– thinning: the number of steps the chain should take. 1 corresponds to

one step. This argument need not be present.
• test: Function that takes either one or two arguments, and returns a vector

with components which will be used for checking the MCMC sampler. The
first argument is interpreted as a parameter value, and if a second argument
exists, it is interpreted as a data value. An example is the identity function:
function(x) x. Alternatively, if you have access to the model’s likelihood
function, you could use: function(x,y) likelihood(x,y).

Value

A vector-valued sample from the test statistic

See Also

sample_indirect, test_mcmc, expect_mcmc

sample_indirect 17

sample_indirect Generate a sample indirectly using MCMC

Description

Sample one realisation of the test statistics indirectly by first drawing data and paramaters from the
generative model, then applying MCMC to propagate the sample.

Usage

sample_indirect(object, thinning, joint)

Arguments

object A list describing the MCMC sampler with the following elements:
• genprior: A function with no arguments that generates a sample of the prior

distribution. No default value.
• gendata: A function that takes as input the parameter value (of the type gen-

erated by genprior) and returns the observed data as an arbitrary R object.
No default value.

• stepMCMC: A function that takes two or three arguments:
– theta: the current position of the chain (of the same type as produced

by the prior),
– dat: the observed data (of the same type as produced by gendat)
– thinning: the number of steps the chain should take. 1 corresponds to

one step. This argument need not be present.
• test: Function that takes either one or two arguments, and returns a vector

with components which will be used for checking the MCMC sampler. The
first argument is interpreted as a parameter value, and if a second argument
exists, it is interpreted as a data value. An example is the identity function:
function(x) x. Alternatively, if you have access to the model’s likelihood
function, you could use: function(x,y) likelihood(x,y).

thinning Amount of thinning for the MCMC chain. 1 corresponds to no thinning. De-
fault: automatically computed to ensure an autocorrelation of at most 0.5 at lag
1.

joint If TRUE, then the MCMC uses systematic scan of both data and parameters,
rather than just updating parameters with the sampler to be tested. Default:
FALSE.

Value

A vector-valued sample from the test statistic

See Also

sample_direct, test_mcmc, expect_mcmc

18 sample_rank

sample_rank Draws a sample rank statistic using the method described by Algo-
rithm 2 in Gandy and Scott (2020).

Description

Used by test_mcmc_reversible to formally test uniformity of rank statistics.

Usage

sample_rank(object, nsteps = 10, thinning = 1, p = 1, tolerance = 1e-08)

Arguments

object A list describing the MCMC sampler with the following elements:

• genprior: A function with no arguments that generates a sample of the prior
distribution. No default value.

• gendata: A function that takes as input the parameter value (of the type gen-
erated by genprior) and returns the observed data as an arbitrary R object.
No default value.

• stepMCMC: A function that takes two or three arguments:
– theta: the current position of the chain (of the same type as produced

by the prior),
– dat: the observed data (of the same type as produced by gendat)
– thinning: the number of steps the chain should take. 1 corresponds to

one step. This argument need not be present.
• test: Function that takes either one or two arguments, and returns a vector

with components which will be used for checking the MCMC sampler. The
first argument is interpreted as a parameter value, and if a second argument
exists, it is interpreted as a data value. An example is the identity function:
function(x) x. Alternatively, if you have access to the model’s likelihood
function, you could use: function(x,y) likelihood(x,y).

nsteps Number of steps of the chain to use. Default: 10.

thinning Amount of thinning for the MCMC chain. 1 corresponds to no thinning. De-
fault: automatically computed to ensure an autocorrelation of at most 0.5 at lag
1.

p The probability with which the MCMC updates the parameter as opposed to the
data in a given step. If less than 1.0, then the MCMC is a random scan on both
data and parameters. Default: 1.0.

tolerance Absolute error where value of the samplers are treated as equal. Default: 1e-8.

Value

An integer between 1 and nsteps

test_mcmc 19

References

Gandy A, Scott J (2020). “Unit Testing for MCMC and other Monte Carlo Methods.” arXiv:2001.06465,
https://arxiv.org/abs/2001.06465.

See Also

test_mcmc_reversible, expect_mcmc_reversible

test_mcmc Test of MCMC chain

Description

Test of MCMC steps having the correct stationary distribution without assuming reversibility of the
chain. Details of this are in Gandy and Scott (2020); it uses ideas described in the appendix of
Gandy and Veraart (2017).

Usage

test_mcmc(object, control = NULL, thinning = NULL, joint = FALSE)

Arguments

object A list describing the MCMC sampler with the following elements:

• genprior: A function with no arguments that generates a sample of the prior
distribution. No default value.

• gendata: A function that takes as input the parameter value (of the type gen-
erated by genprior) and returns the observed data as an arbitrary R object.
No default value.

• stepMCMC: A function that takes two or three arguments:
– theta: the current position of the chain (of the same type as produced

by the prior),
– dat: the observed data (of the same type as produced by gendat)
– thinning: the number of steps the chain should take. 1 corresponds to

one step. This argument need not be present.
• test: Function that takes either one or two arguments, and returns a vector

with components which will be used for checking the MCMC sampler. The
first argument is interpreted as a parameter value, and if a second argument
exists, it is interpreted as a data value. An example is the identity function:
function(x) x. Alternatively, if you have access to the model’s likelihood
function, you could use: function(x,y) likelihood(x,y).

control a list controlling the algorithm

• n number of samples to be taken in the first step. Default: 1e3
• maxseqsteps: Number of sequential attempts to use. Default: 7.

https://arxiv.org/abs/2001.06465

20 test_mcmc_reversible

• incn: Factor by which to multiply n from the second sequential attempt
onward. Default: 4.

• level: bound on the type I error, ie the probability of wrongly rejecting a
sampler with the correct distribution. Default: 1e-5.

• verbose: If TRUE then intermediate messages are printed to the console
giving progress updates. Defaults to FALSE.

• debug: deprecated

• returnsamples: If FALSE (default) the returnvalue is the first argument as
usualy for functions fittingh into the testthat framework. If TRUE then the
generated samples are being returned

thinning Amount of thinning for the MCMC chain. 1 corresponds to no thinning. De-
fault: automatically computed to ensure an autocorrelation of at most 0.5 at lag
1.

joint If TRUE, then the MCMC uses systematic scan of both data and parameters,
rather than just updating parameters with the sampler to be tested. Default:
FALSE.

Value

The first argument, invisibly, to allow chaining of expectations.

References

Gandy A, Scott J (2020). “Unit Testing for MCMC and other Monte Carlo Methods.” arXiv:2001.06465,
https://arxiv.org/abs/2001.06465.

Gandy A, Veraart LAM (2017). “A Bayesian Methodology for Systemic Risk Assessment in Fi-
nancial Networks.” Management Science, 63(12), 4428–4446. doi:10.1287/mnsc.2016.2546.

See Also

expect_mcmc, test_mcmc_reversible, sample_direct, sample_indirect

test_mcmc_reversible Test of MCMC chain assuming reversibility of the chain

Description

Test of MCMC steps having the correct stationary distribution assuming reversibility of the chain.
Uses ideas from Besag and Clifford (1989) as extended to possible ties in Gandy and Scott (2020).

https://arxiv.org/abs/2001.06465
https://doi.org/10.1287/mnsc.2016.2546

test_mcmc_reversible 21

Usage

test_mcmc_reversible(
object,
control = NULL,
thinning = NULL,
nsteps = 10,
p = 1,
tolerance = 1e-08

)

Arguments

object A list describing the MCMC sampler with the following elements:
• genprior: A function with no arguments that generates a sample of the prior

distribution. No default value.
• gendata: A function that takes as input the parameter value (of the type gen-

erated by genprior) and returns the observed data as an arbitrary R object.
No default value.

• stepMCMC: A function that takes two or three arguments:
– theta: the current position of the chain (of the same type as produced

by the prior),
– dat: the observed data (of the same type as produced by gendat)
– thinning: the number of steps the chain should take. 1 corresponds to

one step. This argument need not be present.
• test: Function that takes either one or two arguments, and returns a vector

with components which will be used for checking the MCMC sampler. The
first argument is interpreted as a parameter value, and if a second argument
exists, it is interpreted as a data value. An example is the identity function:
function(x) x. Alternatively, if you have access to the model’s likelihood
function, you could use: function(x,y) likelihood(x,y).

control a list controlling the algorithm
• n number of samples to be taken in the first step. Default: 1e3
• maxseqsteps: Number of sequential attempts to use. Default: 7.
• incn: Factor by which to multiply n from the second sequential attempt

onward. Default: 4.
• level: bound on the type I error, ie the probability of wrongly rejecting a

sampler with the correct distribution. Default: 1e-5.
• verbose: If TRUE then intermediate messages are printed to the console

giving progress updates. Defaults to FALSE.
• debug: deprecated
• returnsamples: If FALSE (default) the returnvalue is the first argument as

usualy for functions fittingh into the testthat framework. If TRUE then the
generated samples are being returned

thinning Amount of thinning for the MCMC chain. 1 corresponds to no thinning. De-
fault: automatically computed to ensure an autocorrelation of at most 0.5 at lag
1.

22 test_mcmc_reversible

nsteps Number of steps of the chain to use. Default: 10.

p The probability with which the MCMC updates the parameter as opposed to the
data in a given step. If less than 1.0, then the MCMC is a random scan on both
data and parameters. Default: 1.0.

tolerance Absolute error where value of the samplers are treated as equal. Default: 1e-8.

Value

The first argument, invisibly, to allow chaining of expectations.

References

Besag J, Clifford P (1989). “Generalized Monte Carlo significance tests.” Biometrika, 76(4), 633–
642. doi:10.1093/biomet/76.4.633.

Gandy A, Scott J (2020). “Unit Testing for MCMC and other Monte Carlo Methods.” arXiv:2001.06465,
https://arxiv.org/abs/2001.06465.

See Also

test_mcmc, expect_mcmc_reversible, sample_rank

Examples

object <- list(genprior=function() rnorm(1),
gendata=function(theta) rnorm(5,theta),
stepMCMC=function(theta,data,thinning) {

f <- function(x) prod(dnorm(data,x))*dnorm(x)
for (i in 1:thinning) {

thetanew = rnorm(1,mean=theta,sd=1)
if (runif(1)<f(thetanew)/f(theta))
theta <- thetanew

}
theta

},
test=function(x) x
)

expect_mcmc_reversible(object)

without thinning
object$stepMCMC = function(theta,data){

f <- function(x) prod(dnorm(data,x))*dnorm(x)
thetanew = rnorm(1,mean=theta,sd=1)
if (runif(1)<f(thetanew)/f(theta))

theta <- thetanew
theta

}
expect_mcmc_reversible(object)

https://doi.org/10.1093/biomet/76.4.633
https://arxiv.org/abs/2001.06465

Index

acf, 14, 15

expect_bernoulli, 2
expect_mc_iid_chisq, 7
expect_mc_iid_ks, 8
expect_mc_iid_mean, 9, 12
expect_mc_test, 10
expect_mcmc, 3, 6, 16, 17, 20
expect_mcmc_reversible, 4, 5, 12, 13, 19, 22

geom_line, 14
geom_point, 14

mc_test, 11

plot.mcunit_mc_iid_mean, 12
plot.mcunit_ranktest, 12
plot_sample_acfs, 13
print.mcunit_mc_test, 14

sample_acfs, 15
sample_direct, 4, 16, 17, 20
sample_indirect, 4, 16, 17, 20
sample_rank, 6, 18, 22

test_mcmc, 4, 16, 17, 19, 22
test_mcmc_reversible, 6, 19, 20, 20

23

	expect_bernoulli
	expect_mcmc
	expect_mcmc_reversible
	expect_mc_iid_chisq
	expect_mc_iid_ks
	expect_mc_iid_mean
	expect_mc_test
	mc_test
	plot.mcunit_mc_iid_mean
	plot.mcunit_ranktest
	plot_sample_acfs
	print.mcunit_mc_test
	sample_acfs
	sample_direct
	sample_indirect
	sample_rank
	test_mcmc
	test_mcmc_reversible
	Index

