
R-package �simctest�

R-class �mmctest�

A Short Introduction

Axel Gandy and Georg Hahn

November 5, 2024

This document describes brie�y how to use the class �mmctest�, included in
the R-package �simctest�. It implements the methods from �MMCTest-A Safe
Algorithm for Implementing Multiple Monte Carlo Tests�, based on Gandy and
Hahn [2014].

The class can be used to evaluate the statistical signi�cance of each hypoth-
esis in a multiple testing problem.

1 Installation

The functions described in this document are included in the R-package �sim-
ctest�. Please see the documentation of �simctest� on how to install the package.

2 Usage

The package is loaded by typing

> library(simctest)

This document can be accessed via

> vignette("simctest-mmctest-intro")

Documentation of the most useful commands can be obtained as follows:

> ? simctest

> ? mcp

> ? mmctest

2.1 Implementing a Monte Carlo multiple testing problem

The following is an arti�cial example. Implementing a Monte Carlo multiple
testing problem consists of two stages.

Firstly, an interface to draw samples has to be provided. This can be done in
two ways, either by implementing the generic class mmctSamplerGeneric or by
directly providing the numberm of hypotheses and a function f which generates
samples. Both ways are described in the next section.

1

Secondly, an object of type mmctest has to be created. It provides a �run�
method which uses the mmctest-object and an mmctSamplerGeneric-object to
evaluate the multiple testing problem.

The algorithm used in class mmctest is the one introduced in Gandy and
Hahn [2014]. The multiple testing problem is evaluated until at least one of four
stopping criteria is satis�ed, see below for a detailed description.

Stopped tests can be resumed with the �cont� function.
Printing an object of type mmctest or mmctestres will display the num-

ber of already rejected and non-rejected hypotheses, the number of undecided
hypotheses and the total number of samples drawn up to the current stage.

2.1.1 Implementing the sampling interface

An interface for drawing new samples has to be provided for each multiple
testing problem.

If new samples are simply generated by a function f , the derived class
mmctSampler provided in simctest can be used as a shortcut. It works as
follows: Any function f used to draw new samples has to be able to accept the
arguments �ind�, a vector with indices of hypotheses and a vector �n� containing
the number of samples to be drawn for each hypothesis in vector �ind�.

The function f has to return a vector containing the number of signi�cant
test statistics for each hypothesis speci�ed in �ind�.

For instance, passing a vector �ind� of (2, 5) and a vector �n� of (5, 10) as
arguments means that 5 more samples are requested for the hypothesis with
index 2 and 10 more for the hypothesis with index 5. The function f might
need further data to evaluate the tests. Such data can be passed on to f as
third argument data.

For instance,

> fun <- function(ind,n,data)

+ sapply(1:length(ind), function(i) sum(runif(n[i])<=data[ind[i]]));

is a function which draws samples from hypotheses having p-values given in
vector data.

The package mmctest provides a shortcut which can be used to easily spec-
ify the interface. Given a function fun to draw samples and the number
num of hypotheses, fun and num (and additional data data) can be passed on
to the class mmctSampler which returns a derived object of the generic class
mmctSamplerGeneric. For example,

> s <- mmctSampler(fun,num=500,data=c(rep(0,100),runif(400)));

returns an sampler interface s for the function fun de�ned above and 500
p-values used to draw new samples.

The class mmctSamplerGeneric can also directly be overwritten with an
own sampler interface. Any sampler has to implement the two generic functions
getSamples and getNumber:

> # class mmctSampler1, inherited from mmctSamplerGeneric

> setClass("mmctSampler1", contains="mmctSamplerGeneric",

+ representation=representation(data="numeric"))

> # get n[i] new samples for every index i in ind

2

> setMethod("getSamples", signature(obj="mmctSampler1"),

+ function(obj, ind, n) {

+ sapply(1:length(ind),

+ function(i) { return(sum(runif(n[i])<=

+ obj@data[ind[i]])); });

+ }

+)

> # get number of hypotheses

> setMethod("getNumber", signature(obj="mmctSampler1"),

+ function(obj) {

+ return(length(obj@data));

+ }

+)

In this case, the sampler will be

> s <- new("mmctSampler1", data=c(rep(0,100),runif(400)));

2.1.2 A simple run of the algorithm

After having speci�ed the sampler, the main algorithm can be executed. This
is done by creating an object of type mmctest using the pseudo-constructor

mmctest(epsilon=0.01, threshold=0.1, r=10000, h, thompson=F,

R=1000),

where epsilon is the overall error on the classi�cation being correct one is
willing to spend (see Gandy and Hahn [2014]) and threshold is the multiple
testing threshold. The MMCTest algorithm uses a �spending sequence� which
controls how the overall error probability is spent on each of the m hypotheses
in each iteration (see Gandy and Hahn [2014]). The parameter r with default
value r = 10000 controls after which number of samples half the error probability
has been spent and can be chosen arbitrarily. The function h is the multiple
testing procedure.

Thompson sampling can be used to e�ciently allocate each new batch of
samples per iteration, see Gandy and Hahn [2015]: it can be activated using the
switch thompson (default is false), where the parameter R determines the accu-
racy (default value 1000 repetitions) with which weights are computed [Gandy
and Hahn, 2015]. The coming subsubsections contain further details.

Any function

h <- function(p, threshold) ...

can be used as a multiple testing procedure as long as it takes a vector p of
p-values and a threshold threshold as arguments and returns the indices of all
rejected hypotheses as vector.

The Benjamini-Hochberg procedure hBH, its modi�cation by Pounds and
Cheng [2006] hPC and the Bonferroni correction hBonferroni are available by
default:

> s <- mmctSampler(fun,num=500,data=c(rep(0,100),runif(400)));

> m <- mmctest(h=hBH);

3

The algorithm can now be started by calling

run(alg, gensample, maxsteps=list(maxit=0, maxnum=0, undecided=0,

elapsedsec=0))

which takes an object alg of type mmctest, a sampler object gensample to
generate samples and a list maxsteps as stopping criterion. The list maxsteps
can include a maximal number of iterations maxit after which the algorithm
stops, a maximal total number of samples maxnum drawn until stopping, a num-
ber undecided of undecided hypotheses one is willing to tolerate or a time
constraint elapsedsec in seconds.

Specifying other items in list maxsteps will lead to an error message and an
empty list will be reset to the default list

list(maxit=0, maxnum=0, undecided=0, elapsedsec=0).

As an example, the following lines evaluate the previously created multiple
testing problem m using the Benjamini-Hochberg procedure hBH and the previous
sampler s. The algorithm stops before reaching more than a total of 1000000
samples or after all but 20 hypotheses are classi�ed:

> m <- run(m, s, maxsteps=list(maxnum=1000000,undecided=20));

> m

Number of rejected hypotheses: 101

Number of non-rejected hypotheses: 384

Number of undecided hypotheses: 15

Total number of samples: 134406

Printing the object displays the number of already rejected and non-rejected
hypotheses, the number of undecided hypotheses and the total number of sam-
ples drawn up to the current stage.

A formatted summary of the indices belonging to rejected and undecided
hypotheses can be printed via summary.mmctestres. All indices not printed
belong to non-rejected hypotheses.

> summary.mmctestres(m)

Number of hypotheses: 500

Indices of rejected hypotheses: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

89 90 91 92 93 94 95 96 97 98 99 100 204

Indices of undecided hypotheses: 142 155 176 186 198 280 312 343 357

373 375 392 396 428 472

All hypotheses not listed are classified as not rejected.

2.1.3 Continuing a run of the algorithm

Each run can be continued with the cont function using a new stopping criterion:

> m <- cont(m, steps=list(undecided=10));

> m

4

Number of rejected hypotheses: 103

Number of non-rejected hypotheses: 388

Number of undecided hypotheses: 9

Total number of samples: 152934

Here, the algorithm has been applied again to the previously stopped mul-
tiple testing problem m. It has been resumed until all but 10 hypotheses were
classi�ed.

As before, maxit, maxnum, undecided and elapsedsec are valid stopping
criteria for parameter steps of function cont.

2.1.4 Requesting the test result

The current test result can be requested from any mmctestres object. Calling
testResult of class mmctestres will return a list containing indices of rejected
hypotheses (vector `$rejected'), nonrejected hypotheses (vector `$nonrejected')
and undecided hypotheses (vector `$undecided'). For the previously continued
run of object m, the result of the computation can be requested as follows:

> res <- testResult(m);

> res$undecided

[1] 155 176 280 312 373 392 396 428 472

> length(res$rejected)

[1] 103

> length(res$nonrejected)

[1] 388

In the example above, the current computation result of object m is stored
in variable res. For object m, the algorithm has been run until all but (at least)
10 hypotheses have been classi�ed. The indices of the undecided hypotheses as
well as the number of rejected and nonrejected hypotheses (i.e. the length of
the vectors containing their indices) are displayed.

2.1.5 Con�dence intervals and estimates of p-values

At any stage, p-values can be estimated based on the total number of samples
drawn for each hypothesis during intial or continued runs:

> estimate <- pEstimate(m);

> lastindex <- length(estimate);

> estimate[lastindex]

[1] 0.3382353

The function pEstimate takes an object of type mmctest as argument and
returns a vector containing estimates of all p-values.

Similarly, the current con�dence limits for the exact (Clopper-Pearson) con-
�dence intervals can be requested:

5

> l <- confidenceLimits(m);

> l$lowerLimits[lastindex]

[1] 0.08617203

> l$upperLimits[lastindex]

[1] 0.6636927

The function confidenceLimits takes an object of type mmctest as argu-
ment and returns a list containing lower con�dence limits (vector `lowerLimits')
and upper con�dence limits (vector `upperLimits') for each p-value.

2.1.6 Switching to QuickMMCTest

The QuickMMCTest algorithm presented in Gandy and Hahn [2015] is included
as a special case of MMCTest.

To activate MMCTest, please set the parameter thompson in the mmctest

constructor to TRUE.
The constructor contains a further value R (default value R = 1000) which

controls the accuracy with which weights are computed in QuickMMCTest, see
Gandy and Hahn [2015] for an explanation.

Apart from setting thompson to TRUE, nothing needs to be done to use
QuickMMCTest.

Typically, QuickMMCTest is run using a maximal total e�ort and a maximal
number of iterations as stopping criteria: if these two are speci�ed in maxit and
maxnum (see "A simple run of the algorithm"), QuickMMCTest spreads out the
total number of samples over all maxit iterations and uses the weights to allocate
samples.

If QuickMMCTest is run without a maximal total e�ort and a maximal
number of iterations, it allocates the batch of samples that MMCTest would
have allocated, which is geometrically increased in each iteration, see Gandy
and Hahn [2014]. QuickMMCTest thus runs until the algorithm is stopped
manually or the desired number of undecided hypotheses is reached.

2.1.7 Empirical rejection probabilities

When using QuickMMCTest, hypotheses can be classi�ed after termination us-
ing three methods: summary.mmctestres provides sets of rejected, non-rejected
and undecided hypotheses as in MMCTest, pEstimates provides estimated p-
values computed with a pseudo-count which can be plugged into the multiple
testing procedure, and �nally

> rej <- rejProb(m)>0.5;

> rej[1]

[1] TRUE

provides empirical rejection probabilities for QuickMMCTest as used in Gandy
and Hahn [2015].

These are obtained by drawing R sets of all the m p-values from the Beta
posteriors for all p-values, by evaluating the multiple testing procedure on each

6

set of p-values and by recording the number of times each hypothesis is rejected
based on the sampled p-values.

The resulting proportion of rejections out of R repetitions are reported by
the method rejProb (as a vector of length m, one number between 0 and 1 per
hypothesis) and give an indicator of how stable the decision on each hypothesis
is: i.e. proportions close to one indicate a very stable decision that a hypothesis
is rejected, likewise proportions close to zero indicate non-rejections and values
close to 0.5 indicate very unstable decisions.

By thresholding them against, e.g. 0.5, empirical rejections can be obtained
as demonstrated in the above code example (all hypotheses with a rejection
probability above 0.5 are rejected). The threshold 0.5 is arbitrary and can be
replaced by higher (lower) values to be more (less) conservative.

2.1.8 An extended example

In this extended example a permutation test is used to determine if two groups
A and B have equal means. This is done in ngroups = 20 cases. Each group has
size 4 and both groups A and B are stored together in one row of length n = 8
in a matrix G.

> n <- 8;

> ngroups <- 20;

> G <- matrix(rep(0,n*ngroups), nrow=ngroups);

> for(j in 1:(ngroups/2)) G[j,] <- c(rnorm(n/2,mean=0,sd=0.55),rnorm(n/2,mean=1,sd=0.55));

> for(j in (ngroups/2+1):ngroups) G[j,] <- rnorm(n,mean=0,sd=3);

To implement this test as a Monte-Carlo test, we start by overwriting the
generic class mmctSamplerGeneric to specify the sampler. The data stored in
an ExSampler object is the matrix G.

> # class ExSampler, inherited from mmctSamplerGeneric

> setClass("ExSampler", contains="mmctSamplerGeneric",

+ representation=representation(data="matrix"))

> setMethod("getSamples", signature(obj="ExSampler"),

+ function(obj, ind, n) {

+ sapply(1:length(ind), function(i) {

+ v <- obj@data[ind[i],];

+ s <- matrix(rep(v,n[i]+1), byrow=T, ncol=length(v));

+ for(j in 1:n[i]) s[j+1,] <- sample(v);

+ means <- abs(rowMeans(s[,1:(length(v)/2)])-

+ rowMeans(s[,(length(v)/2+1):length(v)]));

+ return(sum(means>means[1]));

+ });

+ }

+)

> setMethod("getNumber", signature(obj="ExSampler"),

+ function(obj) {

+ return(length(obj@data[,1]));

+ }

+)

7

The getSamples method generates n[i] permutations of each row i in the
indices vector ind and counts how many times the generated means exceeded
the data mean (stored in row 1).

The sampler is then

> exsampler <- new("ExSampler", data=G);

As before, the multiple testing problem is set up by creating an object of
type mmctest using hBH as multiple testing procedure and the exsampler object
as sampler interface. The constructor mmctest uses a default threshold of 0.1.

> m <- mmctest(h=hBH);

> m <- run(m, exsampler, maxsteps=list(undecided=0));

Algorithm mmctest has been run until all hypotheses were classi�ed. Based
on this run, the following hypotheses are rejected:

> testResult(m)$rejected

[1] 1 2 6 8 9 10

Estimates for p-values are

> pEstimate(m)

[1] 0.001369863 0.028456912 0.055531071 0.127208481 0.250000000 0.028712085

[7] 0.069156293 0.001369863 0.001369863 0.001369863 0.195266272 0.201183432

[13] 0.565217391 0.250000000 0.150000000 0.391304348 0.456521739 0.338235294

[19] 0.134275618 0.391304348

To verify this result, exact p-values are computed by enumerating all per-
mutations of each row. This is done using algorithm QuickPerm.

Based on the exact p-values, given by

> pexact

[1] 0.00000000 0.02857143 0.05714286 0.11428571 0.25714286 0.02857143

[7] 0.05714286 0.00000000 0.00000000 0.00000000 0.17142857 0.22857143

[13] 0.54285714 0.25714286 0.11428571 0.34285714 0.42857143 0.25714286

[19] 0.11428571 0.31428571

the Benjamini-Hochberg procedure at threshold 0.1 will give the following
set of rejections:

> which(hBH(pexact, threshold=0.1))

[1] 1 2 6 8 9 10

References

A. Gandy and G. Hahn. MMCTest - A Safe Algorithm for Implementing Multi-
ple Monte Carlo Tests. Scandinavian Journal of Statistics, 41(4):1083�1101,
2014.

A. Gandy and G. Hahn. Quickmmctest � Higher accuracy for Monte-Carlo
based multiple testing. 2015. arXiv:1402.2706.

S. Pounds and C. Cheng. Robust estimation of the false discovery rate. Bioin-
formatics, 22(16):1979�1987, 2006. doi: 10.1093/bioinformatics/btl328.

8

	Installation
	Usage
	Implementing a Monte Carlo multiple testing problem
	Implementing the sampling interface
	A simple run of the algorithm
	Continuing a run of the algorithm
	Requesting the test result
	Confidence intervals and estimates of p-values
	Switching to QuickMMCTest
	Empirical rejection probabilities
	An extended example

