Package: systemicrisk 0.4.3

systemicrisk: Systemic Risk and Network Reconstruction

Analysis of risk through liability matrices. Contains a Gibbs sampler for network reconstruction, where only row and column sums of the liabilities matrix as well as some other fixed entries are observed, following the methodology of Gandy&Veraart (2016) <doi:10.1287/mnsc.2016.2546>. It also incorporates models that use a power law distribution on the degree distribution.

Authors:Axel Gandy [aut, cre], Luitgard A.M. Veraart [aut]

systemicrisk_0.4.3.tar.gz
systemicrisk_0.4.3.zip(r-4.5)systemicrisk_0.4.3.zip(r-4.4)systemicrisk_0.4.3.zip(r-4.3)
systemicrisk_0.4.3.tgz(r-4.4-x86_64)systemicrisk_0.4.3.tgz(r-4.4-arm64)systemicrisk_0.4.3.tgz(r-4.3-x86_64)systemicrisk_0.4.3.tgz(r-4.3-arm64)
systemicrisk_0.4.3.tar.gz(r-4.5-noble)systemicrisk_0.4.3.tar.gz(r-4.4-noble)
systemicrisk_0.4.3.tgz(r-4.4-emscripten)systemicrisk_0.4.3.tgz(r-4.3-emscripten)
systemicrisk.pdf |systemicrisk.html
systemicrisk/json (API)
NEWS

# Install 'systemicrisk' in R:
install.packages('systemicrisk', repos = c('https://agandy.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

3.88 score 5 stars 51 scripts 522 downloads 32 exports 2 dependencies

Last updated 7 months agofrom:cb44589c25. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 02 2024
R-4.5-win-x86_64OKNov 02 2024
R-4.5-linux-x86_64OKNov 02 2024
R-4.4-win-x86_64OKNov 02 2024
R-4.4-mac-x86_64OKNov 02 2024
R-4.4-mac-aarch64OKNov 02 2024
R-4.3-win-x86_64OKNov 02 2024
R-4.3-mac-x86_64OKNov 02 2024
R-4.3-mac-aarch64OKNov 02 2024

Exports:calibrate_ERcalibrate_ER.nonsquarecalibrate_FitnessEmpchoosethincloneMatrixdefaultdefault_cascadedefault_clearingdiagnoseERE_step_cyclefindFeasibleMatrixfindFeasibleMatrix_targetmeangenLgetfeasibleMatrGibbsSteps_kcycleModel.additivelink.exponential.fitnessModel.fitness.conditionalmeandegreeModel.fitness.genlambdaparpriorModel.fitness.meandegreeModel.Indep.p.lambdaModel.lambda.constantModel.lambda.constant.nonsquareModel.lambda.GammaPriorModel.lambda.Gammaprior_multModel.p.BetaPriorModel.p.Betaprior_multModel.p.constantModel.p.constant.nonsquareModel.p.Fitness.Servediosample_EREsample_HierarchicalModelsteps_ERE

Dependencies:lpSolveRcpp

Example: Hierarchical Models

Rendered fromHierarchicalModels.Rmdusingknitr::knitron Nov 02 2024.

Last update: 2024-05-06
Started: 2015-12-21

Non-square Matrices

Rendered fromNonSquare.Rmdusingknitr::knitron Nov 02 2024.

Last update: 2019-01-13
Started: 2017-11-14

Some Introductory Examples

Rendered fromIntroduction.Rmdusingknitr::knitron Nov 02 2024.

Last update: 2024-05-06
Started: 2015-03-20

Readme and manuals

Help Manual

Help pageTopics
Calibrate ER model to a given densitycalibrate_ER
Calibrate ER model to a given density with a nonsquare matrixcalibrate_ER.nonsquare
Calibrate empirical fitness model to a given densitycalibrate_FitnessEmp
Calibrate Thinningchoosethin
Creates a deep copy of a matrixcloneMatrix
Default of Banksdefault
Default Cascadedefault_cascade
Clearing Vector with Bankruptcy Costsdefault_clearing
Outputs Effective Sample Size Diagonistics for MCMC rundiagnose
Does one Gibbs Step on a cycleERE_step_cycle
Finds a Nonnegative Matrix Satisfying Row and Column SumsfindFeasibleMatrix
Creates a feasible starting matrix with a desired mean average degreefindFeasibleMatrix_targetmean
Generate Liabilities Matrix from PriorgenL
Creates a feasible starting matrixgetfeasibleMatr
Gibbs sampling step of a matrix in the ERE modelGibbsSteps_kcycle
Fitness model for liabilities matrixModel.additivelink.exponential.fitness
Mean out-degree of a node with given fitness in the fitness modelModel.fitness.conditionalmeandegree
Prior distribution for eta and zeta in the fitness modelModel.fitness.genlambdaparprior
Mean out-degree of a random node the fitness modelModel.fitness.meandegree
Combination of Independent Models for p and lambdaModel.Indep.p.lambda
Model for a Constant lambdaModel.lambda.constant
Model for a Constant lambda and Non-Square MatricesModel.lambda.constant.nonsquare
Model with Gamma Prior on LambdaModel.lambda.GammaPrior
Model Using Multiple Independent ComponentsModel.lambda.Gammaprior_mult
Model for a Random One-dimensional pModel.p.BetaPrior
Model Using Multiple Independent ComponentsModel.p.Betaprior_mult
Model for a Constant pModel.p.constant
Model for a constant p and Non-Square MatricesModel.p.constant.nonsquare
Multiplicative Fitness Model for Power LawModel.p.Fitness.Servedio
Sample from the ERE model with given row and column sumssample_ERE
Sample from Hierarchical Model with given Row and Column Sumssample_HierarchicalModel
Perform Steps of the Gibbs Sampler of the ERE modelsteps_ERE